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ABSTRACT

The channel access scheme is critical for the performance and en-
ergy efficiency of ad hoc wireless networks. We present a rigorous
analysis of a simple and fully scalable MAC technique and demon-
strate how the trade-off between energy consumption and delay
can be resolved. The analysis is based on a probabilistic model
that encompasses all the relevant adversities of wireless networks.
For Rayleigh fading channels, it turns out that the performance
analysis can be carried out independently for effects caused by
noise and effects caused by interference. We study the case of
one-dimensional networks, and, as an upper performance bound
we also provide the results for optimum scheduling.

1. INTRODUCTION

For performance assessment of multi-hop wireless networks, it is
often assumed that the radius for a successful transmission of a
packet has a fixed and deterministic value R, irrespective of the
condition and realization of the wireless channel [1, 2]. Further-
more, the interference range is often taken to be identical to cR
with some c > 1. Such simplified link models ignore the proba-
bilistic nature of the wireless channel and the fact that the signal-
to-noise-and-interference ratio, that determines the success of a
transmission, is a random variable.
Fading, noise, and interference are the key adversities in a wireless
network. In this work, we use a link model that is derived from the
physical layer and takes those effects into account. Nevertheless,
it is analytically tractable and thus yields valuable insight into the
network behavior.
For the network, it is assumed that N nodes are arranged at po-
sitions xi. Nodes are transmitting packets independently in every
timeslot k = 0, 1, 2, . . . with equal probability p and power P0.
The packets are of equal length and fit into one time slot. Traffic is
bidirectional, i.e., the packet’s destination can be any of the near-
est neighbors. The results for our simple scheme provide a useful
analytical lower bound; as an upper bound, the performance of the
optimum MAC scheduler is determined.
The case of one-dimensional networks is given special consider-
ation. Its practical significance lies in the fact that ideally, any
multi-hop connection in a network is by itself a one-dimensional
network.
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2. THE PROBABILISTIC LINK MODEL

We assume a narrowband multipath wireless channel with a coher-
ence time longer than the packet transmission time. The channel
can then be modeled as a flat Rayleigh fading channel [3] with
AWGN z. Therefore the received signal is yk = ak xk + zk ,
where ak is the path loss multiplied by the fading coefficient. The
variance of the noise process is denoted by σ2

z . With Rayleigh
fading, the received signal power is exponentially distributed.
The transmission from node i to node j is successful if the signal-
to-noise-and-interference ratio (SINR) γij is above a certain thresh-
old Θ that is determined by the communication hardware, and
the modulation and coding scheme (normally between 1 and 100
(0dB-20dB):

γij > Θ (1)

With the assumptions above, γij is a discrete random process with
exponential distribution: pγij

(x) = 1/γ̄ij e−x/γ̄ij with mean

γ̄ij =
P̄ij

σ2
z + σ2

ij

. (2)

P̄ij denotes the average received signal power over a distance dij =
‖xi − xj‖2: P̄ij = P0d

−α
ij , where P0 is proportional to the trans-

mit power1, and the path loss exponent is 2 6 α 6 5.
σ2

ij is the interference power affecting a transmission from i to j.
It is the sum of all the undesired signals and can be expressed as

σ2
ij =

∑

n∈T \{i}

P̄nj , (3)

where T is the set of nodes that are transmitting in a given time
slot. Note that node j itself can be a member of T . If it is, every
transmission from any node to node j is bound to fail. In [2, 4],
the SINR is defined in a similar way. However, the transmission
is considered to be successful whenever γ̄ij is bigger than some
threshold. Hence, only the large-scale path loss is considered,
while the probabilistic nature of the fading channel is ignored.

It follows from (2) that the reception probability over a link ij,
pij = P[γij > Θ], is

pij = e−Θ/γ̄ij = e
−

Θσ2
z

P̄ij · e
−

Θσ2
ij

P̄ij . (4)
1This equation does not hold for very small distances. So, a more ac-

curate model would be P̄ij = P ′
0 · (dij/d0)−α, valid for dij > d0, with

P ′
0 as the average value at the reference point d0, which should be in the

far field of the transmit antenna. At 916MHz, for example, the near field
may extend up to 3-4ft (several wavelengths).



Clearly, the reception probability is the product of two probabili-
ties, where one factor is determined by the noise and the other one
by the interference. Thus, instead of the SINR γij , we can define
the two independent exponentially distributed random variables,
namely the SNR γZ

ij with mean γ̄Z
ij = P̄ij/σ2

z and the SIR γI
ij

with mean γ̄I
ij = P̄ij/σ2

ij , and formulate the condition for suc-
cessful reception as two independent conditions that both need to
be satisfied:

γZ
ij > Θ and γI

ij > Θ ⇔ pij = e−Θ/γ̄Z
ij · e−Θ/γ̄I

ij (5)

This allows an independent analysis of the effect caused by noise
and the effect caused by interference. Whereas the first probability
can be improved by increasing the transmit power, the interference
probability is independent of P0, for both P̄ij and σ2

ij scale with
P0.

3. NETWORK PERFORMANCE ANALYSIS

Based on the model presented in the previous Section, we are ana-
lyzing the network performance in terms of throughput and delay
as functions of the parameters p and P0 given α, σ2

z , and Θ. As
shown in (4) and (5), the analyses with respect to noise and with
respect to interference can be carried out independently.

3.1. Noise Analysis

We first determine the performance of a network without inter-
ference. In this case, only one node is transmitting, so we can
consider a two-node network. The link success or reception prob-
ability over this link, pr, is then given by

pr := P[γ > Θ] = e
−

Θσ2
z

P0 d−α . (6)

To achieve a link reliability of PL, retransmissions are necessary if
the reception probability pr is smaller than PL. The total number
of transmissions is given by

nt =

{

log(1−PL)
log(1−pr)

pr < PL

1 pr > PL

. (7)

For our analysis, we neglect the fact that nt can only assume inte-
ger values. Focusing on the interesting range where pr < PL, the
total energy consumption to achieve a reliability of PL is

EPL
(P0) = nt P0 = P0

log(1 − PL)

log
(

1 − e
−

Θσ2
z

P0d−α

)

. (8)

The location of the minimum of EPL
(·) does not depend on the

desired PL:

P opt
0 = arg min

P0

EPL
(P0) =

Θσ2
zdα

ln 2
. (9)

The factor 1/ ln 2 ≈ 1.44 corresponds to 1.6dB, hence the trans-
mit power that minimizes the overall energy consumption is 1.6dB
above Θσ2

z . From (6), it can be derived that this point corresponds
to a link success probability of pr = 0.5. The minimum energy
value is then given by

EPL
(P opt

0 ) = Θσ2
zdα − ln(1 − PL)

(ln 2)2
. (10)
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Figure 1: Total number of transmissions to achieve a link reliabil-
ity of PL (logarithmic scale).
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Figure 2: Total energy consumption as a function of P0 for PL =
0.50, 0.55, . . . , 0.95. The vertical line indicates the optimum in
terms of energy.

Figs. 1 and 2 show the dependence of the number of transmissions
and the total energy consumption as a function of PL. The energy
is expressed in dBm, which corresponds to dB(mJ) if the duration
of a packet transmission were 1s.
The delay that a data packet experiences is proportional to nt.
Comparing the minimum required transmit energy EPL

(P opt
0 ) with

the single-transmission (nt = 1) energy EPL
(P single

0 )

EPL
(P single

0 ) = dα Θσ2
z

− ln PL
(11)

for a desired link reliability PL, we get a ratio of

EPL
(P opt

0 )

EPL
(P single

0 )
=

ln(1 − PL) ln PL

(ln 2)2
, (12)

which is 1 for PL = 0.5 and achieves -10dB at PL = 0.99.

3.2. Interference Analysis

In this Section, we consider a network of N nodes where the re-
ception is only corrupted by interference, not by noise. The per-
formance of the network is the number of successful packet trans-
missions in a given time slot, denoted by gN (p).
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Figure 3: Reception probability as a function of the interferer dis-
tance for Θ = 10 and α = 2, 3, 4, 5.

In general, for a transmission over unit distance with one inter-
ferer at distance d, the mean SIR is γ̄I = dα, yielding a reception
probability of (see Fig. 3)

pr = e−Θd−α

. (13)

For multiple interferers, the respective probabilities prk
are to be

multiplied:

pr =

n
∏

k=1

e−Θd−α
k = e−Θ

∑n
k=1

d−α
k . (14)

Small networks.
Small networks can be rigorously analyzed. For N = 2, the trans-
mission is successful if one node transmits and the other one does
not, i.e., g2(p) = 2p(1 − p) with a maximum of 1/2 at p = 1/2.
For 3 nodes, either one node may transmit (no interference) or two
nodes transmit, causing mutual interference. If the nodes are on a
line with unit distance and one of the end nodes is the receiver, the
transmission is successful with probability e−Θ2−α

. Since there
are two such cases, but in each, the center node only transmits to
the non-transmitting node with probability 1/2, the performance

is g3 = 3p(1 − p)2 + e−Θ2−α

p2(1 − p). If there is an inter-
ferer at the same distance as the intended transmitter, the reception
probability is e−Θ.
In general, the number of correctly received packets gN (p) in a
network with N nodes as a function of the transmit probability p
can be expressed as

gN (p) =

N−1
∑

k=1

ck pk (1 − p)N−k , (15)

since in every timeslot, k nodes transmit and N − k do not. The
cases where 0 nodes or N nodes transmit do not contribute to
gN (p). gN (p) is an N -th order polynomial with gN (0) = gN (1) =
0 and a single maximum in (0, 1/2]. At p = 0, its derivative
is c1 = N , indicating that for small p, the number of successful
transmissions is proportional to p. The other coefficients ck de-
pend on Θ, α, and the topology of the network.
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Figure 4: Received packets per timeslot as a function of the trans-
mit probability for a one-dimensional network for α = 2, 3, 4, 5
(solid) and α = 0,∞ (dashed). Θ = 10.
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Figure 5: Received packets per timeslot and node for Θ = 10 and
α = 2, 3, 4, 5 for a one-dimensional network with N = 50 nodes.
The solid line is the analytical approximation, the dotted line the
simulation result.

One-dimensional networks with unit node distance.
In this case, the node distances d(j) in (15) are integers, and the
number of terms in ck is substantially reduced.
For the case where every node randomly chooses its left or right
neighbor as its destination, Figure 4 depicts the functions gN (·)
for N = 3, 4, 5 and α = 2, 3, 4, 5 with Θ = 10. As lower and
upper bounds, the cases α = 0 and α = ∞ are also included.
For larger N , the manual derivation of the coefficients ck is still
theoretically feasible, but not practical. Since we know that the
exponential term in (14) must be present in the approximation, we
can deduce that

ĝN (p) = Np(1 − p)2e−qp , q > 0 , (16)

is a good analytical approximation. q is a function of α and Θ. The
factor p(1−p)2 arises because for a successful transmission, there
must be a group of three adjacent nodes where only the middle
one transmits. The exponential term accounts for the interference.
The parameter q can be determined by a numerical least squares
optimization. In Fig. 5, both a simulation and the corresponding
analytical function are plotted. Indeed, they are almost perfectly
identical. As expected, for large N , the performance per node con-
verges to a constant.
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Figure 6: The four phases of the optimum transmit schedule for
q = 2 with bidirectional traffic.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

α=2

α=5

Bidirectional traffic

Link usage q

R
ec

ei
ve

d 
pa

ck
et

s 
pe

r 
no

de
 a

nd
 ti

m
es

lo
t

Figure 7: Received packets per timeslot and node for Θ = 10 and
α = 2, 3, 4, 5 for a large one-dimensional network where every
q-th link is used in every timeslot.

Comparison with the optimum scheduler.
With the proposed link model, the performance of the optimum
scheduler can be determined in a straightforward manner. As-
sume that in a one-dimensional network, every q-th link is used
in a given timeslot. Fig. 6 shows the best scheduling scheme for
q = 2 for bidirectional traffic (2q phases). In Fig. 7, the through-
put as a function of q is plotted. Optimum scheduling is achieved
at q = 8, 4, 3, 3 for α = 2, 3, 4, 5. Note the similarity of the curve
with Fig. 5. The throughput ratio between the simple MAC scheme
and the optimum one is in [0.4, 0.5] for α = 5, 4, 3, 2. For smaller
Θ, the lower bound of the ratio approximates 1/e, which corre-
sponds to the ratio of slotted ALOHA vs. optimum scheduling for
the multiple access channel.
Interestingly, the bidirectional use of a connection does not cut
the throughput in half. The unidirectional case, where every q-th
link is used in the same direction, is shown in Fig. 8. Clearly, the
maximum per-node throughput is lower, and, for the same q, the
average distance between the receiver and the interfering transmit-
ters is lower. Maximum throughput is achieved at q = 8, 5, 4, 3 for
α = 2, 3, 4, 5. The “bidirectional gain” ranges from 1.4% (α = 2)
to 27% (α = 5). For Θ = 0dB, it increases to 10%–45%.

4. CONCLUSIONS

With the proposed probabilistic link model, the transmit power P0

and the transmit probability p for the simple MAC scheme can be
independently optimized. The resulting performance is simply the
product of the reception probability (from the noise analysis) and
the performance gN (·) (from the interference analysis). Hence,
increasing P0 does not have an adverse effect on the packet trans-
mission.
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Figure 8: Received packets per timeslot and node for Θ = 10 and
α = 2, 3, 4, 5 for a large one-dimensional network where every
q-th link is used unidirectionally.

Noise analysis. The useful power range is P0 ∈ [Θσ2
z , Θσ2

z + 20]
(in dBm). In this range, the trade-off between delay (number of
transmissions to achieve a desired reliability) and power consump-
tion can be analytically resolved. The optimum transmit power
with respect to energy consumption is only 1.6dB above Θσ2

z ,
which corresponds to a reception probability of 50%.
Interference analysis. The performance polynomial gN (p) de-
pends on Θ and, almost linearly, on the path loss exponent α. As a
rule of thumb, we can say that in a one-dimensional network with
unit distance, with Θ = 10 and high α (and high transmit power),
the per-node performance is approximately 0.1, i.e., a node can
successfully transmit in at most 10% of the timeslots. The transmit
probability should be between 25% and 30%. In terms of energy,
p should be kept as low as possible. For small p (p < pmax/2),
the performance is proportional to p. This is the energy-neutral
area, since an increase in p results in a proportional increase in the
performance. For larger p, the delay is reduced, at the expense of
higher energy consumption.
Compared with the optimum scheduler, where the per-node through-
put is about 0.25, the loss in throughput is approx. 1/e; the per-
formance of every practical MAC scheme lies in between. The
gain from using links bidirectionally is about 25% for α > 3 and
Θ / 10dB.
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